MAC-CPTM Situations Project

Harrington Situation 1: Absolute Value Defined Piecewise

Prompt

In a middle school Advanced Algebra class, students have been learning about function notation, domain, range, modeling functions with graphs, tables and rules when the teacher writes $f(x)=|x|$ on the board and asks if students could think of a way to write a rule that would apply for $\mathrm{x} \geq 0$ and another for x -values less than 0 .

$$
f(\mathrm{x})=\begin{aligned}
& \quad, \text { for } \mathrm{x} \geq 0 \\
& , \\
& , \\
& \text { for } \mathrm{x}<0
\end{aligned}
$$

The class quickly decided that if $x \geq 0$, the rule would just be $f(x)=x$, but were stumped for $\mathrm{x}<0$. The teacher asked, "What if $\mathrm{x}=-3$?" After some thought, a student suggest that you do -2 times the number plus the number and the teacher writes $-2(-3)+-3$. The teacher asks if this will always work and the student says, "yes, $-2(-5)+-5=5$."

Mathematical Foci

Mathematical Focus 1

Absolute value is a distance from 0.
The absolute value of x is the distance x is from 0 .

Mathematical Focus 2

The function $f(x)=|x|$ is two linear functions, $f(x)=x$ for $x \geq 0$, and $f(x)=-x$ for $x<0$.

Mathematical Focus 3

The breakpoint for an absolute value function is the value that makes the expression inside the absolute value 0 .

For $\mathrm{f}(\mathrm{x})=|\mathrm{g}(\mathrm{x})|, \mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ when $\mathrm{g}(\mathrm{x}) \geq 0$ and $\mathrm{f}(\mathrm{x})=-\mathrm{g}(\mathrm{x})$ when $\mathrm{g}(\mathrm{x})<0$.
If $f(x)=|x-2|$, then $f(x)=x-2$ when $x-2 \geq 0$ or $x \geq 2$ and $f(x)=-(x-2)$ when $x<2$.

Mathematical Focus 4

Proof is not accomplished by example and middle school Algebra students can begin to develop an understanding of how they might develop a mathematical argument to show that something is always true.

In this specific case, the pattern observed is: $\quad-2(-3)+-3=3$

$$
-2(-5)+-5=5
$$

$$
-2(-8)+-8=8
$$

so the very simple conjecture is "proved"

